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Abstract The effect of undersampling on estimating the size of extreme natural hazards

from historical data is examined. Tests using synthetic catalogs indicate that the tail of an

empirical size distribution sampled from a pure Pareto probability distribution can range

from having one-to-several unusually large events to appearing depleted, relative to the

parent distribution. Both of these effects are artifacts caused by limited catalog length. It is

more difficult to diagnose the artificially depleted empirical distributions, since one expects

that a pure Pareto distribution is physically limited in some way. Using maximum-like-

lihood methods and the method of moments, we estimate the power-law exponent and the

corner size parameter of tapered Pareto distributions for several natural hazard examples:

tsunamis, floods, and earthquakes. Each of these examples has varying catalog lengths and

measurement thresholds, relative to the largest event sizes. In many cases where there are

only several orders of magnitude between the measurement threshold and the largest

events, joint two-parameter estimation techniques are necessary to account for estimation

dependence between the power-law scaling exponent and the corner size parameter.

Results indicate that whereas the corner size parameter of a tapered Pareto distribution can

be estimated, its upper confidence bound cannot be determined and the estimate itself is

often unstable with time. Correspondingly, one cannot statistically reject a pure Pareto null

hypothesis using natural hazard catalog data. Although physical limits to the hazard source

size and attenuation mechanisms from source to site constrain the maximum hazard size,

historical data alone often cannot reliably determine the corner size parameter. Probabi-

listic assessments incorporating theoretical constraints on source size and propagation

effects are preferred over deterministic assessments of extreme natural hazards based on

historical data.
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1 Introduction

There have been several recent cases of natural hazards that were unexpectedly large

relative to the results of prior hazard models. The most obvious example is the 2011

Tohoku-oki earthquake and tsunami, both of which exceeded expectations based largely on

historical precedent (cf. Rikitake and Aida 1988; Stein et al. 2012). The 2004 Sumatra–

Andaman earthquake and accompanying tsunami were also unexpectedly large for this

region, with the latter producing devastating consequences. Large floods such as the 1993

Mississippi River and 2006 Danube River floods, which exceeded historical maximum

water levels (cf., Malamud et al. 1996; Mikhailov et al. 2008), conform more to a power-

law-type (Pareto) size distribution with a heavier tail than conventionally used

distributions.

There is a wealth of both geophysical and statistical literature indicating that many

natural hazards follow a power-law distribution of sizes. Earthquakes are perhaps the most

well-known hazard that can be described by a power law. Early studies on earthquakes

(Ishimoto and Iida 1939; Gutenberg and Richter 1944) indicated a power-law decay of

size, i.e., a linear relationship on a semilog plot between earthquake magnitude (m) and the

total number of events C m. The primary observed hazard effects of earthquakes, such as

ground acceleration and/or seismic intensity, are complicated by earth structure, leading to

variable attenuation, seismic ray path distortion, and frequency-dependent amplitude los-

ses; thus, the ground-shaking hazard in the most important frequency bands can saturate, or

not wholly depend on earthquake magnitude (Andrews et al. 2007). Other effects of

earthquakes such as tsunami generation do not appear to exhibit saturation (Geist 2012).

More recent studies have indicated that other solid-earth natural hazards such as rock

falls and landslides also appear to exhibit power-law behavior (Hergarten and Neu-

gebauer 1998; Dussauge et al. 2003; Malamud et al. 2004; ten Brink et al. 2006). The

sizes of hydrologic hazards such as riverine flooding (measured by discharge) and

tsunami flooding (measured by run-up) follow a power-law decay, as indicated by, for

example, Turcotte and Green (1993) and Burroughs and Tebbens (2005), respectively.

The power-law relation also extends to wildfires (Strauss et al. 1989; Malamud et al.

1998; Cumming 2001; Schoenberg et al. 2003), volcanic eruptions (Mason et al. 2004),

snow avalanches (Birkeland and Landry 2002), and solar flares (Lu and Hamilton 1991).

The specific probability distribution used to describe these phenomena is termed a

Pareto distribution, which exhibits a power-law decay of sizes above a minimum

threshold size. Statistical tests of whether a Pareto or some other distribution best

describes the tail of a given empirical distribution are discussed by, for example, Clauset

et al. (2009).

Upper limits to the power-law relation have been difficult to quantify. Each natural

hazard likely has a physical limit, for example the size of a drainage basin or the area of a

fault that an earthquake can occur on. In many cases, however, the upper limit has been

severely underestimated by historical data. We demonstrate this effect by estimating the

parameters of a tapered Pareto distribution using historical catalog data for different natural

hazards. The tapered Pareto distribution applies an exponential taper to the Pareto

cumulative distribution. This taper is generally thought to be consistent with the behavior

of dissipative physical systems (Kagan 1993) and mixing different truncated Pareto dis-

tributions (e.g., earthquake magnitude distributions on different faults) (Sornette et al.

1991). Further, physical justification for tapered Pareto distributions is described by Sor-

nette and Sornette (1999) and Vere-Jones et al. (2001). Alternate modifications to the

Pareto distribution for large sizes include tapering the Pareto density distribution with an
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exponential function (termed a gamma distribution by Kagan 2002) (Kagan 1993; Main

1996; Sornette and Sornette 1999) and sharp truncation at a maximum size (Utsu 1999;

Kagan 2002). For the latter, Kijko and Graham (1998) and Kijko (2004) provide statistical

methods to determine the truncation point from the catalog data. Pisarenko and Sornette

(2004) determine the crossover point between a generalized Pareto distribution and either

an exponential or power-law taper, both of which result in a steeper decay of the distri-

bution functions. Finally, Chakrabarty and Samorodnitsky (2012) recently discuss statis-

tical tests to generally discriminate between tapered and truncated Pareto distributions.

The objective of this study is to characterize the effect of undersampling natural hazards

that tend to follow power-law scaling. This includes diagnosing artificial tail shapes caused

by finite sampling from historical catalogs that have previously and commonly been

attached physical significance in hazard models. The undersampling problem has recently

been discussed for earthquakes by Holschneider et al. (2011) and Zöller (2013) from a

Bayesian perspective. The objective of this study is to also apply quantitative parameter

estimation techniques to a variety of natural hazards. Estimation of the size distribution tail

is important for natural hazard assessments, as the extreme event sizes can often dictate the

overall hazard and necessary degree of preparedness (Strauss et al. 1989; Hergarten 2004;

Sornette 2004), as well as catastrophic insured losses (Kagan 2007).

In this study, we demonstrate the effects of undersampling Pareto distributions on

extreme natural hazards as follows. In Sect. 2, the properties of the Pareto and tapered

Pareto distributions are described, as well as parameter estimation techniques and methods

to generate synthetic catalogs. Several tests using synthetic catalogs are described, varying

the catalog size and corner size parameter relative to the measurement threshold. These

techniques and findings are applied to three types of natural hazards in Sect. 3: tsunami,

floods, and earthquakes. Examples were chosen that have a sufficient catalog length and

that have special significance, such as the 2011 Tohoku-oki tsunami and stream gauge

records from different climate regions. Finally, in Sect. 4, we discuss general implications

of undersampling for future hazard assessments. Results of this study provide guidance on

using historical catalog data as a basis for estimating extreme hazards.

2 Estimating and sampling Pareto and tapered Pareto distributions

2.1 Distribution functions

The cumulative and density functions of the Pareto and tapered Pareto probability distri-

butions are defined below. Both distributions include an observational threshold parameter

At. At may also be specified as the smallest value for which power-law behavior holds

(Newman 2005). The cumulative number of events with event-maximum amplitude greater

than A is given by

U Að Þ ¼ At

A

� �b

for At�A; ð1Þ

where b is the shape parameter or power-law exponent. UðAÞ is the complementary

cumulative distribution or survivor function U Að Þ ¼ 1� F Að Þ, where F is the cumulative

distribution function. For b B 1, the first and second moments are infinite and the asso-

ciated distribution can be defined as ‘‘heavy’’ (Zaliapin et al. 2005). In general, heavy

distributions are typically thought of as wild (e.g., Sornette 2004) in the sense that there are
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a large variety of outcomes that can be far from the average. The probability density

function for the Pareto distribution is given by

f Að Þ ¼ b
A

b
t

Abþ1
for At�A: ð2Þ

The tapered Pareto distribution includes a ‘‘soft’’ corner size parameter or turning point

Ac applied to the Pareto distribution as an exponential term:

U Að Þ ¼ At

A

� �b

exp
At � A

Ac

� �
; for At�A: ð3Þ

The tapered Pareto distribution is an alternative to a truncated Pareto distribution that

imposes a ‘‘hard’’ maximum amplitude parameter discussed in the Introduction and shown

in Fig. 1. The taper bounds a heavy pure Pareto distribution (b B 1) in the sense that the

statistical moments become finite (Kagan and Schoenberg 2001). Vere-Jones et al. (2001)

describe the tapered Pareto distribution as being consistent with a maximum entropy

distribution in which the mean is fixed and with percolation theory as the correlation length

approaches infinity. The pdf of the tapered Parteo distribution is given by

f Að Þ ¼ b
A
þ 1

Ac

� �
At

A

� �b

exp
At � A

Ac

� �
for At�A: ð4Þ

2.2 Parameter estimation

Several parameter estimation methods have been developed to determine b and Ac for the

tapered Pareto distribution. One-parameter estimation methods summarized by Kagan

(2002) are those that consider each parameter separately, with the more straightforward

estimation of b performed first. To estimate b, the following maximum-likelihood estimate

(MLE) is used for the pure Pareto distribution, given n observations (Aki 1965; Kagan

2002):

b̂ ¼ n=
Xn

i¼1

ln
Ai

At

: ð5Þ

Naylor et al. (2009) indicate that this MLE is equivalent to the results from the gen-

eralized linear model (GLM) with Poisson residuals (cf. Charnes et al. 1976). Knopoff and

Kagan (1977) indicate that, for data that are power-law-distributed, maximum-likelihood

methods are preferred over methods derived from extreme value theory.

For both the tapered or truncated Pareto distributions, the MLE of b is determined by

solving the following equation by iteration (Kagan 2002):

1

b̂
�

ln Au

At

� �

Au

At

� �b̂
�1

� 1

n

Xn

i¼1

ln
Ai

At

� �
¼ 0; ð6Þ

where Au is an upper limit well above possible values of Ac or the value used to truncate the

Pareto distribution. The standard error estimate for b is given by (Deemer and Votaw 1955;

Kagan 2002)

Nat Hazards

123

Author's personal copy



rb ¼
1� At

Au

� �b̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n 1� At

Au

� �b̂
� �2

b̂�2 � At

Au

� �b̂
ln Au

At

� �h i2

( )vuut
: ð7Þ

To estimate Ac, Kagan and Schoenberg (2001) developed a method based on the sta-

tistical moments of the tapered Pareto distribution, resulting in the following expression:

Âc ¼
1
n

Pn
i¼1

A2
i

n�A2
t

2 Atbþ 1� bð Þ�A½ � : ð8Þ

A bias correction factor is indicated by Kagan and Schoenberg (2001), although the root

mean square error of the estimate made with the correction factor is larger for small

samples than without the correction factor. Other one-parameter methods are described by

Kagan and Schoenberg (2001) and Kagan (2002). Expressions to determine standard errors

for each parameter are given by Kagan (2002), who indicates that the estimation of Ac is

particularly sensitive to the number of samples near Ac. As shown below, in many cases,

the likelihood maps are strongly asymmetric along the Ac profile, indicating that a standard

error measure of uncertainty is only approximate.

Joint estimation of b and Ac, termed two-parameter estimation, can be made using

numerical optimization methods. The log-likelihood function is given by (Kagan 2002)

‘ ¼ nblnAt þ
1

Ac

nAt �
Xn

i¼1

Ai

 !
� b

Xn

i¼1

lnAi þ
Xn

i¼1

ln
b
Ai

þ 1

Ac

� �
: ð9Þ

Vere-Jones et al. (2001) describe an iterative method using Newton–Raphson approx-

imations to determine the two-parameter MLE. In this study, we use the Nelder–Mead

direct search method of optimization to find the MLE from Eq. 9 (Nelder and Mead 1965;

Press et al. 2007). Because the log-likelihood equation involves the term 1/Ac, we define

g = 1/Ac (Kagan and Schoenberg 2001; Kagan 2002) and perform joint MLE on b and g.

Meerschaert et al. (2012) further discusses parameter estimation for the tapered Pareto

distribution using rank order statistics.

1 5 10 50 100 500 1000

0.001

0.01

0.1

1

Α

Φ
(Α

)

Fig. 1 Comparison of Pareto
cumulative distribution (blue
line) with tapered and truncated
Pareto cumulative distribution
(red and green lines,
respectively: dashed Ac = 20;
solid Ac = 200). For all
distributions shown, b = 1
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2.3 Likelihood ratios and confidence regions

If we have a set of distribution parameters (h0) under a null hypothesis (H0) where one of

the parameters of a more complex distribution in the same distribution family drops out

(e.g., as for the pure Pareto distribution compared to the tapered Pareto distribution where

Ac drops out), then the likelihood ratio can be used to test whether or not H0 should be

rejected. The test statistic is 2(l - l0), where l and l0 are the log-likelihood maxima for the

tapered Pareto and Pareto distribution, respectively, and is asymptotically distributed as the

chi-squared distribution with one degree of freedom v2
a 1½ � (Kagan 2002). For a particular

confidence level a, the test can be written

2ð‘� ‘0Þ[ v2
a 1½ �: ð10Þ

Similarly, confidence regions for the two parameters of the tapered Pareto distribution

can be determined using likelihood ratios. The contour (hc) for (b, Ac) and (b, g) plots that

defines a particular confidence region can be found approximately by equating the like-

lihood ratio to the chi-squared distribution with two degrees of freedom (i.e., the number of

parameters jointly estimated) (e.g., Bird and Kagan 2004):

2ð‘� ‘cÞ ¼ v2
a 2½ �: ð11Þ

2.4 Sampling

To generate a synthetic sample of length n using a pure Pareto distribution, the following

expression is used

A ¼ AtR
�1=b: ð12Þ

where R is a random variable uniformly distributed on the interval (0,1]. For the tapered

Pareto distribution, a synthetic sample is generated by selecting the minimum of Eq. 12

and

A ¼ At � Ac ln R ð13Þ

(Vere-Jones et al. 2001).

For a catalog of finite length, the probability density function of the largest sample in

general is given by

fmax Að Þ ¼ nf Að Þ FðAÞ½ �n�1: ð14Þ
The expected value of the largest sample in a catalog for a pure Pareto distribution

derived by Newman (2005) is

Amaxh i ¼ nAt B n;
b� 1

b

� �
� Atn

1=b: ð15Þ

where B is the beta-function. Thus, the expected largest value of a sampled Pareto dis-

tribution depends on the catalog length (n). However, there will be large uncertainty in

Amax for any given catalog as expressed by fmax(A). The expression for the expected largest

value from a tapered Pareto distribution can be found by numerical computation of Eq. 14

and depends on b and the ratio At/Ac.
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2.5 Simulations

The range of possible empirical distributions can be determined by drawing multiple

catalogs of events with the same sample number from a parent distribution. For example,

cumulative distributions of 100 different catalogs are shown in Fig. 2a that are drawn from

a pure Pareto distribution using the method described in Sect. 2.4 for b = 1 and At = 1.

Each catalog contains 50 events. There are significant differences in the apparent tail of the

sampled size distribution, with some distributions appearing to be depleted in large events

and some distributions appearing to have more abundant large events than the parent

Pareto distribution (bold blue lines in Fig. 2a). The ‘‘depleted’’ catalog in this example may

be misinterpreted as being distributed according to a tapered Pareto distribution with an

artificially low value of Ac (cf. Pisarenko and Sornette 2004) or according to a distribution

from a different family with a lighter tail. For the other case shown in Fig. 2a where there

are one-to-several large events relative to the parent distribution, the large events may be

misinterpreted as ‘‘characteristic’’ or system-wide events that are distinct from the back-

ground Pareto distribution (Wesnousky 1994; Kagan 1996). However, several studies have

shown that the interpretation of some cases of characteristic events is a consequence of

finite sampling (Howell 1985; Stein and Newman 2004; Naylor et al. 2009; Parsons and

Geist 2009a; Parsons et al. 2012).

Undersampling may therefore cause us to interpret an observed catalog as having an

upper threshold defined by a characteristic event that may not be reflective of the true

maximum or most frequent large event. The largest events tend, of course, to have the

longest return periods, meaning that nearly every power-law system with a time-limited

observation period is subject to undersampling. Thus, before a characteristic interpretation

is made, it is important to ensure that this is not a sampling artifact. Naylor et al. (2009)

explain that there is both a visual bias for large sizes sampled from a Pareto distribution as

well as a sampling bias indicated by a positive skew in the residuals that often lead to a

characteristic interpretation.

Shown in Fig. 2b are cumulative distributions for 100 catalogs sampled from a tapered

Pareto distribution with the same power-law exponent (b = 1, At = 1, Ac = 20). As in

Fig. 2a, each catalog contains 50 events. In this case, the variation in the tail of the sampled

distribution is less than for the pure Pareto distribution, although apparent ‘‘depleted’’ and

‘‘characteristic’’ sampled distributions are still evident as in Fig. 2a.

Increasing the number of events in a catalog decreases the variation in the sampled

distribution above a constant minimum probability (Umin) as displayed in Fig. 2c, d. Here,

Umin is determined from the number of samples in the catalogs shown in Fig. 2a, b:

Umin ¼ 1
50
¼ 0:02. Because Figs. 2c and d are plotted at the same scale as Figs. 2a and b,

the distribution tail is not shown at lower probabilities. Figures 2e and f display the

distributions for Umin ¼ 0:005 and 0.001, respectively. Uncertainty in the largest sampled

events is similar, because of the self-similarity of the pure Pareto distribution (Naylor et al.

2009). Increasing the number of catalogs displayed (from 100 catalogs in Fig. 2 and 200

catalogs in the examples discussed below) does not significantly affect these results,

although outlier distributions are more likely to be present.

The effect of finite sampling on parameter estimation can also be examined. For a pure

Pareto distribution with b = 1, the MLEs of b̂ are determined for 104 catalogs of different

lengths (n = 50, 100, 200, and 1,000). The mean value and standard error over all catalogs

are reported in Table 1. The formula for the standard error b̂=
ffiffiffi
n
p

(Aki 1965; Kagan 2002)

is also reported. For this study, standard error estimates are reported in this and other tables
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associated with one-parameter estimation; confidence intervals are indicated in likelihood

contour maps for two-parameter estimation results below. Estimates of b improve with

larger catalog sizes as indicated in Table 1, although even a catalog size of 50 is able to

estimate b of the parent distribution fairly accurately.

For a tapered Pareto distribution, we now examine how sample length affects the

parameter estimation of corner amplitude. For Ac = 20 At (Table 2), the results of 104

catalogs of the same lengths as in Table 1 are shown. As for the pure Pareto distribution,

the estimation of b is fairly accurate, although we do not see as large of an improvement in

b estimation for larger catalogs. The expression provided by Eq. 7 for the standard error in
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0.10

0.20

0.50

1.00

1 2 5 10 20 50 100 200

0.05

0.10

0.20

0.50

1.00

1 2 5 10 20 50 100 200

0.05

0.10

0.20

0.50

1.00

1 2 5 10 20 50 100 200

0.05

0.10

0.20

0.50

1.00

A A 

A 

A 

Φ
(A

)
Φ

(A
)

Φ
(A

)

Φ
(A

)
Φ

(A
)

Φ
(A

)

Pareto
n=50

Pareto
n=200

Pareto
n=200

A 

A 

Pareto
n=1000
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Fig. 2 Examples of 100 cumulative distributions (blue lines) sampled from a parent distribution (red line).
a Pareto parent distribution (b = 1) sampled with catalog length of 50 events. Any single catalog can appear
to have depleted or characteristic distribution (bold blue lines) relative to the parent distribution. b Same as
(a) except catalogs sampled from a tapered Pareto distribution (Ac = 20). c Same as (a) except catalog
length is 200 events. d Same as (a) except catalog length is 1,000 events. (e) and (f): Same as (c) and
(d) plotted at the full scale associated with catalog length (Umin ¼ 0:005 and 0.001, respectively)
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b for a tapered Pareto distribution compares favorably with the numerical estimate, as with

the pure Pareto distribution. These results indicate that longer catalog lengths are needed to

accurately estimate Ac. Refer to Kagan (2002) for additional simulations testing the Ac

standard error estimates using the one-parameter techniques.

If Ac is increased to 200 At, there is less chance of having samples near Ac for a given

catalog length compared to the previous case where Ac = 20 At. Results of the one-

parameter estimation for this case are shown in Table 3. Because there is proportionally

more data to define the power-law component of the distribution for the larger Ac of the

parent distribution, there is less error in the b estimate. Conversely, the estimate of Ac is

unstable and much less certain than for Ac = 20 At (Table 2) and likely meaningless for

catalogs less than 1,000 samples.

The two-parameter estimation technique jointly estimates b and Ac and yields infor-

mation of the correlation of likelihood estimates for the two parameters. Shown in Fig. 3a

are (b, Ac) likelihood maps for four random catalogs sampled from a tapered Pareto

distribution with At = 1 Ac = 20 b = 1 (dot in each figure) and a catalog length of 50

events in each case. In each case, the MLE is shown by the plus sign and bold lines show

the 95 and 99 % confidence contours (see Sect. 2.3). The likelihood maps show strongly

asymmetric confidence intervals for Ac, with the lower confidence limit easier to define

than the upper confidence limit. As indicated previously, because the likelihood expression

in Eq. 9 involves the reciprocal of Ac, we also plot likelihood maps for b and g = 1/Ac

(Kagan and Schoenberg 2001; Kagan 2002). The (b, g) likelihood maps that correspond to

the same four catalogs shown in Fig. 3a are shown in Fig. 3b. In this case, the likelihood

contours are ellipsoidal. Thus, the error estimates are more symmetrical than the (b, Ac)

maps and can be more easily interpreted in terms of likelihood ratios (Fan et al. 2000). The

reciprocal function of Ac in the likelihood function explains the asymmetry in the

Table 1 One-parameter estima-
tion results for 104 synthetic cat-
alogs: Pareto distribution At = 1,
b = 1

n b̂ Standard error b̂=
ffiffiffi
n
p

50 1.022 0.147 0.144

100 1.011 0.102 0.101

200 1.006 0.071 0.071

1,000 1.001 0.032 0.032

Table 2 One-parameter estima-
tion results for 104 synthetic cat-
alogs: tapered Pareto distribution
At = 1, Ac = 20, b = 1

n b̂ Standard error Eq. 7 Ac Standard error

50 1.074 0.186 0.182 21.78 222.7

100 1.063 0.128 0.129 23.12 16.66

200 1.061 0.090 0.091 22.95 10.08

1,000 1.057 0.040 0.040 22.83 4.11

Table 3 One-parameter estima-
tion results for 104 synthetic cat-
alogs: tapered Pareto distribution
At = 1, Ac = 200, b = 1

n b̂ Standard error Eq. 7 Ac Standard error

50 1.028 0.155 0.152 82.6 12,170

100 1.019 0.106 0.106 609.5 24,040

200 1.014 0.075 0.075 178.3 3,655

1,000 1.010 0.033 0.033 210.4 136.0
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confidence bounds for Ac and indicates that standard error estimates for Ac may not

adequately convey this asymmetry.

In Fig. 3b, the confidence ellipses are sloped indicating a negative correlation in the

likelihood estimates for the two parameters: an increase in the estimate for b is com-

pensated by a corresponding decrease in the estimate for g, that is, the estimate of g is

affected by the estimate of b—an observation difficult to ascertain from the one-parameter

estimation methods described above. Moreover, for cases where the estimates of the two

parameters are dependent (i.e., inclined axes of contour ellipsoids), the likelihood ratio test
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Fig. 4 Same as Fig. 3b with a catalog length of 1,000 events

Fig. 3 a Two-parameter (b, Ac) likelihood contour maps for four random catalogs sampled from a tapered
Pareto distribution with b = 1 and Ac = 20 (shown by dot). Catalog length is 50 events. MLE shown by
plus sign. 95 and 99 % confidence region shown by blue and magenta lines, respectively. Note that the MLE
in the bottom right figure is off the likelihood map. b (b, g) likelihood maps for same four catalogs shown in
(a), where g is the reciprocal of Ac

b
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based on a profile at the MLE for b may not yield a comprehensive result. As shown in the

case of Fig. 3b (top left), the likelihood ratio taken along a profile of b̂ would falsify the

null hypothesis (g = 0; Ac ? ?) at the 95 % confidence level. However, there exists

other estimates of b within the 95 % confidence region in which the null hypothesis is true.

In all four cases shown in Fig. 3b, there is a range of b estimates for a pure Pareto

distribution (g = 0) within the 95 and 99 % confidence, even though the synthetic catalog

was sampled from a tapered Pareto distribution. Thus, for small catalog lengths, we may

not be able to tell whether a given catalog follows a pure Pareto distribution or not.

Figure 4 shows the two-parameter estimates for a catalog length of 1,000, using the

same parent distribution as in Fig. 3. As expected, the uncertainty in estimating both

parameters greatly decreases with the longer catalog. The axes in the confidence ellipses

are still inclined, indicating dependency in estimates of the two parameters. However, the

confidence ellipses do not intersect g = 0 indicating that the pure Pareto null hypothesis

can be falsified for the longer catalog.

In Figs. 5 and 6, the catalogs are sampled from a tapered Pareto distribution with b = 1

and Ac = 200 (At remains fixed at 1). The uncertainty in b significantly decreases with the
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Fig. 5 Same as Fig. 3 sampled from a tapered Pareto distribution with b = 1 and Ac = 200 (shown by dot).
Catalog length is 50 events
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1,000-event catalog (Fig. 6) compared to the 50-event catalog (Fig. 5). However, in this

case, where the ratio of Ac to At is large, significant uncertainty remains in g and the

confidence contours frequently intersect the g = 0 axis. Thus, the upper confidence bound

of Ac, even for the 1,000-event catalog, is difficult to ascertain for large differences

between Ac and At. In both cases, the confidence contours are more aligned with the axes

than for a parent distribution with Ac = 20 (Figs. 3, 4), suggesting that the likelihood

estimation for the two parameters is roughly independent.

3 Examples of undersampling effects for observed natural hazards

Three examples demonstrating the effect that undersampling hazards governed by Pareto-

type distributions are described in this section. The first two examples relate to hazards as

they impact particular sites: tide gauge stations in the case of tsunamis (Sect. 3.1) and

hydrologic stations in the case of floods (Sect. 3.2). The third example deals with a hazard

source, subduction earthquakes measured by seismic moment, rather than the hazard itself
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Fig. 6 Same as Fig. 5 with a catalog length of 1,000 events
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(i.e., ground motion). The tsunami and flood hazard examples aggregate different types of

sources (e.g., tsunamigenic sources and precipitation events) and include the effects of

propagation from the source to the site. Because these effects are site- and region-specific,

global analysis of these hazards would result in mixed distributions and is not performed.

The earthquake example is included to determine the effects of undersampling on globally

distributed hazard sources, though mixed distributions may still be an issue as discussed in

Sect. 3.3.

3.1 Tsunamis

An analysis of the historical record of tsunamis is often the basis for siting and designing

critical facilities, such as nuclear power plants near the coast and tsunami defense struc-

tures (e.g., JSCE 2002; Sato et al. 2003; Yanagisawa et al. 2007; Prasad 2009; Shuto and

Fujima 2009). Typically, some measure of uncertainty related to the limitations of the

historical record is accounted for in these hazard assessments, although the possible tsu-

nami sources and outcomes are strongly constrained by historical precedent. Part of the

reason for using the historical record as a starting point for tsunami hazard assessment

relates to viewing tsunamis within a hydrologic spectrum of floods: specifically, as part of

estimating the ‘‘probable maximum flood’’ from a variety of phenomena (storm surge,

riverine flooding, tsunamis, etc.) (Yen 1988; IAEA 2011). For this reason, we examine how

well the historical record defines the distribution of tsunami sizes, with particular attention

to quantifying the uncertainty in estimating the size and probability of extreme events.

Determining empirical size distributions for tsunamis has been discussed in several

previous studies (Soloviev 1970; Nakamura 1979; Horikawa and Shuto 1983; Kulikov

et al. 2005). The study by Burroughs and Tebbens (2005) was one of the first to recognize

that tsunami data at small amplitudes tend to fit a power-law distribution. Toward large

amplitudes, the power-law distribution is assumed to be truncated in the discrete form,

although it has been unclear whether upper truncation that best fits the data is related to

sampling limitations or in the physics controlling tsunami size (Burroughs and Tebbens

2001). Moreover, there has not been an analysis of parametric uncertainty associated with

empirical tsunami size distributions. We use the methods described in Sect. 2 and the long

record of frequent tsunamis in Japan to determine the effect that a single extreme event

(i.e., the 2011 Tohoku-oki tsunami) has on the empirical tsunami size distribution.

3.1.1 Data selection

Although there are a variety of available tsunami measurements, tide gauge records pro-

vide as close to a homogeneous tsunami catalog as possible. For the purpose of this study, a

tide gauge station-specific catalog of events is selected in which the maximum tsunami

amplitude for a given event is compiled (http://www.ngdc.noaa.gov/hazard/tsu_db.shtml).

Inclusion of other tsunami data, such as eyewitness observations, post-tsunami surveys,

and paleotsunami deposits, would increase the size and duration of the tsunami catalog, but

would also result in a mixed catalog that spans a finite geographic area rather than being

specific to a single location. Measurement uncertainty, censoring, and mixed measurement

types would be considerable obstacles in a statistical analysis of such a catalog (Geist and

Parsons 2006; Geist et al. 2009).

Although there are many tide gauge stations and offshore observatories that measured

the size of the 2011 Tohoku-oki tsunami, we focus on the data from the Miyako tide gauge

station in Japan. This station has a long history of recording tsunamis and is a station that is
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close to the earthquake source of the 2011 tsunami. The maximum amplitude of the 2011

Tohoku-oki tsunami recorded at the Miyako station is reported to be 8.5 m. The size of the

tsunami, however, may have been greater than this because the tide gauge station was

disrupted by the tsunami (Ozaki 2011). The nearby off-Miyako GPS buoy recorded more
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Fig. 7 Catalog of maximum tsunami amplitude per event (A) for the Miyako tide gauge station. Amplitude
given on a logarithmic scale
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Fig. 8 Empirical cumulative distribution of the data shown in Fig. 7 (red line) in comparison with 200
synthetic catalogs (blue lines) sampled from a pure Pareto distribution (green line) with b estimated from the
one-parameter method (b = 1.01)

Table 4 Parameter estimates of Pareto and tapered Pareto distributions

Pareto Tapered Pareto

b̂� rb b̂� rb Âc � rAc
(m)

Without Tohoku-oki 1.09 ± 0.15 1.09 ± 0.21 1.36 ± 1.16

With Tohoku-oki 1.01 ± 0.14 0.99 ± 0.15 11.2 ± 22.7

Nat Hazards

123

Author's personal copy



of the waveform than the tide gauge station (Ozaki 2011), suggesting that the Miyako tide

gauge station recorded the largest amplitude of the direct wave. We will use 8.5 m as the

maximum for the 2011 event at the Miyako station for the analysis presented below.

3.1.2 Results

Data from the Miyako tide gauge station is evaluated with respect to the Pareto and tapered

Pareto distributions (Fig. 7). For the data considered in this study, At = 0.07 m as deter-

mined by evaluating censoring effects and the recording threshold for tsunamis in the
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Fig. 9 Two-parameter (b, Ac) likelihood contour maps for the Miyako tide gauge catalog a without and
b with the 2011 events. Catalog lengths are 51 and 52 events, respectively. MLE shown by plus sign. 95 and
99 % confidence interval in parameter estimates shown by blue and magenta lines, respectively
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Fig. 10 Two-parameter (b, g) likelihood contour maps for the same data as analyzed in Fig. 9
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presence of ambient noise from wind waves (cf. Rabinovich and Stephenson 2004; Geist

and Parsons 2011). The empirical cumulative distribution of the data is shown in Fig. 8

(red line) in comparison with the cumulative distribution of 200 synthetic catalogs (blue

lines) with the same catalog length (n = 52) sampled from a pure Pareto distribution with

b = 1.01 (green line; see below for parameter estimation results). The synthetic catalogs

form a trumpet-shaped envelope of distributions (cf. Main et al. 2011). The data both with

and without the 2011 event are within the envelope defined by the synthetic catalogs. The

empirical cumulative distribution of the catalog with the 2011 event appears to contain a

characteristic event, but this is an artifact of sampling the Pareto distribution as described

in Sect. 2.

The distribution parameters for the Miyako tide gauge station are estimated both with

and without the 2011 Tohoku-oki tsunami. The parameters and error estimates for both the

Pareto and tapered Pareto distributions using the one-parameter methods described in Sect.

2 are listed in Table 4. There are only small changes in b with the inclusion of the 2011

Tohoku-oki event. In contrast, the change in the estimated Ac value is considerable.

Moreover, the log-likelihood curve is flatter resulting in a very large error estimate in Ac

when the 2011 event is included. Conventional asymptotic expressions for standard error

may be heavily biased for the sample size considered here.

Results of the joint two-parameter estimation method are shown in Figs. 9 and 10. The

(b, Ac) likelihood maps indicate a large discrepancy between the estimates of Ac with and

without the 2011 Japan tsunami measurement, similar to the one-parameter results.

Without the 2011 event, Ac is estimated to be 0.85 m, whereas with the 2011, Ac is

estimated to be 15.1 m (cf. with the one-parameter results Table 4). It should be noted that

the 15.1 m estimate is within the wide confidence regions displayed in Fig. 9a. The esti-

mates of b are 0.88 and 0.91, without and with the 2011 events, respectively, slightly lower

that estimates using the one-parameter method (Table 4). Shown in Fig. 10 are the (b, g)

likelihood maps. These maps indicate that the pure Pareto distribution cannot be rejected

for either of these catalogs (with or without the 2011 event) at the 95 or 99 % confidence

level.

3.2 Floods

Traditionally, several different families of probability distributions have been used to

describe stream flows. These include distributions from the normal family (normal, log-

normal, and 3-parameter lognormal), generalized extreme value distribution, and the

Pearson type III family of distributions (Stedinger et al. 1993). It is worth noting that

power-law-type distributions have been suggested for flooding as conservative alternatives

to conventional size distributions such as the log Pearson type III distribution (Kidson and

Richards 2005; Malamud and Turcotte 2006). Turcotte and Haselton (1996) showed that

historical records from US Geological Survey (USGS) hydrologic stations are well fit by a

Pareto distribution, with the power-law exponent varying according to climate. Malamud

et al. (1996) model Mississippi River flooding records with a power-law relationship, who,

along with Kidson and Richards (2005), indicate that the power-law models yield more

conservative estimates for extreme flooding events. These estimates are also consistent

with paleoflood data (Malamud et al. 1996; Malamud and Turcotte 2006). We examine the

data from to US hydrologic stations in different climate regions that were modeled using a

power-law relation by Turcotte and Green (1993) and Malamud and Turcotte (2006) to

determine whether or not a corner size parameter for stream flow can be confidently

estimated.

Nat Hazards

123

Author's personal copy



3.2.1 Data selection

Partial duration flood series are derived from USGS hydrologic station data. The procedure

to determine the partial duration floods from daily discharge data is described by Malamud

and Turcotte (2006). As explained by these authors, partial duration flood series is
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Fig. 11 Catalog of daily mean stream flow greater than At for a Wenatchee River, Washington, and
b Arroyo Seco, California, stations. Stream flow given on a logarithmic scale
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Fig. 12 Empirical cumulative distribution of the data shown in Fig. 11 (red line) in comparison to 200
synthetic catalogs (blue lines) sampled from a pure Pareto distribution (green line) with b estimated from the
one-parameter method (b = 3.74, 1.10, respectively)
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preferred over annual flood series because there may be several major floods in a given

year and these floods may be larger than an annual flood in another year. Thus, annual

flood series may be statistically biased in terms of the number and size of floods recorded at

a station. In an attempt to determine statistically independent floods, maximum daily mean

stream flows are separated by a specified number of days: in this study, as in Malamud and

Turcotte (2006), 30 days are used. The number of partial duration floods for a particular

station catalog is limited to the number of water years encompassed by the catalog.

Malamud and Turcotte (2006) provide further details of the procedure used.

Two station catalogs in different climate regions are analyzed and compared: Arroyo Seco

near Pasadena, California; Wenatchee River in the state of Washington (Fig. 11). The Arroyo

Seco station is in a semiarid region with a small drainage area (41 km2). The peak daily mean

stream flow within the catalog that spans the years 1914–2010 is 104 m3/s, occurring on

February 20, 1914. The Wenatchee River station is in a maritime climate region with a much

larger drainage area of 1,531 km2. The peak daily mean stream flow within the catalog that

spans the years 1911–2008 is 932 m3/s, occurring on November 30, 1995.

The empirical cumulative distributions for the two catalogs are shown in Fig. 12 (red

lines). The Wenatchee River distribution follows closely to the pure Pareto distribution

(green line). In contrast, the Arroyo Seco distribution falls off at high stream flow values.

Although the empirical distribution shown in Fig. 12b is within the envelope of 200

synthetic distributions, it is on the depleted side of the envelope. We discuss whether a

corner stream flow can be estimated for this station in the analysis below.
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Fig. 13 Two-parameter (b, g) likelihood contour maps for a the Wenatchee River and b Arroyo Seco
catalogs. Catalog lengths are 77 and 63 events, respectively. MLE shown by plus sign. 95 and 99 %
confidence interval in parameter estimates shown by blue and magenta lines, respectively

Table 5 Parameter estimates of Pareto and tapered Pareto distributions

Pareto Tapered Pareto

b̂� rb b̂� rb Q̂c � rQc
(m3/s)

Wenatchee River 3.74 ± 0.43 3.72 ± 0.43 2,390 ± 1,500

Arroyo Seco 1.10 ± 0.14 1.02 ± 0.21 67.4 ± 36.2
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3.2.2 Results

The parameters for the Pareto and tapered Pareto distributions using the one-parameter

methods are listed in Table 5. There are significant differences in b̂ between the two

stations, with the Arroyo Seco station having a heavier tail. The value of b appears to be

influenced primarily by climate (Turcotte and Green 1993; Turcotte and Haselton 1996).

The estimated corner stream flow parameter Q̂c for the Wenatchee River station is sig-

nificantly higher than the maximum mean-daily stream flow in the catalog, indicating that

this estimate is suspect. (The expected value of Amax is 1,072 m3/s from Eq. 15.) In

contract, Q̂c for the Arroyo Seco station is well within the range of the catalog. In both

cases, the standard error estimate is large relative to the estimated value.

Results of the joint two-parameter estimation (b, g) for the Wenatchee River and

Arroyo Seco stations are shown in Fig. 13. The estimates of b are 2.37 and 0.77,

respectively, lower than the estimates from the one-parameter methods. Inclination of the

maximum-likelihood contours indicates dependence between the estimates of b and g. The

95 and 99 % confidence regions for the Wenatchee River station (Fig. 13a) intersect the

g = 0 axis, indicating that the pure Pareto distribution cannot be rejected. We are almost

able to reject the pure Pareto distribution for the Arroyo Seco station: the confidence

regions barely intersect the g = 0 axis, consistent with the results shown in Fig. 12b.

3.3 Subduction zone earthquakes

It is well known that earthquakes in general follow a power-law distribution of sizes

(Ishimoto and Iida 1939), often referred to as the Gutenberg–Richter relation (Gutenberg and

Richter 1944). Various forms of a modified Pareto distribution have been used to model

global catalogs of seismic moment (M). The moment magnitude (mw) of an earthquake is

defined as a logarithmic function of seismic moment (Hanks and Kanamori 1979):

mw ¼
2

3
log10 M � 9:05ð Þ ð16Þ

Various zonation schemes have been used for earthquakes, including the Flinn–Engdahl

regions based on geographic boundaries (Flinn et al. 1974). For this study, we use

earthquake zones based on plate tectonic boundary type, focusing on earthquakes within a

M
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 m
)
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Fig. 14 Catalog of global subduction zone earthquakes as specified by Kagan et al. (2010). Seismic
moment given on a logarithmic scale
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maximum horizontal distance from a subduction zone plate boundary as specified by Bird

and Kagan (2004). Bird and Kagan (2004) found that tectonic boundaries and intraplate

regions can have distinctive distribution parameters, particularly with regard to the corner

magnitude. The global Centroid Moment Tensor (CMT) earthquake catalog is used to

analyze the distribution of seismic moment near subduction zones, where most of the

largest earthquakes occur. By coincidence, the first three-fourths of the catalog that started

in 1977 with the advent of broadband seismometry contain no m C 9 earthquakes—prior

to the December 26, 2004 Sumatra–Andaman earthquake, the last m C 9 earthquake was

in 1964. We examine the effects of a lack of large earthquakes on parameter estimation by

separately analyzing the global CMT catalog of earthquakes up to December 26, 2004 and

the entire global CMT.

3.3.1 Data selection

Earthquakes within the ‘‘trench zone’’ as defined by Kagan et al. (2010) were used for this

analysis. The catalog includes earthquakes from January 1, 1982 through March 31, 2008,
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Fig. 15 Empirical cumulative distribution of the data shown in Fig. 14 (red line) in comparison with 200
synthetic catalogs (blue lines) sampled from a pure Pareto distribution (green line) with b estimated from the
two-parameter method (b = 0.64). a Global CMT catalog of subduction zone earthquakes January 1, 1982–
December 25, 2004. b Global CMT catalog of subduction zone earthquakes January 1, 1982–March 31, 2008
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which is complete at a threshold mw of 5.6 (Bird et al. 2002), and at depths shallower than

70 km. The trench zone includes earthquakes that occur within 186 km of oceanic con-

vergence plate boundaries and within 220 km landward and 135 km seaward of subduction

zone plate boundaries as indicated in Bird and Kagan (2004). The locations of the plate

boundaries are defined in Bird (2003). Earthquakes in the trench zone also include intra-

plate earthquakes in the outer rise and within the overriding plate. A total of 4,283

earthquakes are analyzed (Fig. 14).

Two empirical cumulative distributions are shown in Fig. 15: one for the sub-catalog up

to, but not including, the December 26, 2004 mw = 9.0 Sumatra–Andaman earthquake

(Fig. 15a) and one for the entire catalog (Fig. 15b). Eight earthquakes with mw [ 8 have

occurred since the 2004 Sumatra–Andaman event. As with the other natural hazards

examined, the empirical distributions are compared with 200 synthetic catalogs of the same

length sampled from a pure Pareto distribution with the MLE of b. The sub-catalog up to

December 26, 2004 (Fig. 15a) appears depleted, falling to the left of the 200 synthetic

distributions sampled from a pure Pareto distribution. The distribution of the entire catalog

(Fig. 15b), including the recent large-magnitude earthquakes, falls within the envelope of

synthetic catalog distributions. (The width of this envelope will slightly depend on the

number of synthetic distributions used.)

3.3.2 Results

Results of the joint two-parameter estimation (b, g) for the two catalogs are shown in

Fig. 16. In contrast to the other natural hazards presented, the axis for g is given on a

logarithmic scale for presentation purposes. The estimate of b is 0.64 for both catalogs and

is well constrained, although Kagan (2010) describes several factors that cause an upward

bias in the estimate of b for earthquakes. The estimates of Mc are 8.11 for the 1982–2004

catalog and 8.76 for the 1982–2008 catalog. The latter results replicate results obtained by

Kagan et al. (2010). There appears to be little inclination of the likelihood contours,

suggesting independence between the estimates of b and g, relative to the other natural

hazards examined (see Kagan 2002 for further discussion).
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Fig. 16 Two-parameter (b, g) likelihood contour maps (logarithmic g axis) for a 1982–2004 and
b 1982–2008 catalogs. Catalog lengths are 3,586 and 4,283 events, respectively. MLE shown by plus sign.
95 and 99 % confidence interval in parameter estimates shown by blue and magenta lines, respectively
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The interesting result of this analysis is that 95 and 99 % confidence regions shown in

Fig. 16a (and even the 99.9 % confidence region not shown) for the 1982–2004 catalog are

closed, suggesting that a pure Pareto parent distribution can be rejected with confidence.

However, when more recent earthquakes are included, the contours intersect the g = 0 axis

(not shown because of the logarithmic scaling), indicating that the pure Pareto distribution

cannot be rejected. Similar conclusions were reached by Zöller (2013) in a statistical analysis

of the entire global CMT catalog. In addition, the MLE of g using the full catalog

(1982–2008) is outside of the 99 % confidence region defined by the 1982–2004 sub-catalog.

Main et al. (2008) show that adding shallow earthquakes in the global CMT catalog

through December 2006, including the 2004 Sumatra–Andaman, effectively shifts the

moment distribution to a pure Pareto from a tapered Pareto distribution determined for the

1977–1999 catalog. In addition, Bird and Kagan (2004) calculate a much higher mc = 9.58

for the pre-2004 global CMT catalog merged with the Pacheco and Sykes (1992) catalog

starting in 1900 and using tectonic constraints on seismic moment release rate (see also

Kagan and Jackson 2013). Thus, forecasting the maximum magnitude of global subduction

earthquakes is strongly dependent on the nature of the input catalog, and one can be badly

misled (at high confidence) if the input data are not fully understood.

This issue naturally leads back to the definition of confidence region or interval. A

confidence interval is a random interval dependent on the particular sample used for

calculating the interval (Rice 2007). Typically, the definition is that if an experiment is

repeated many times, the confidence region would include the true value of a parameter 95,

99 %, etc., of the time. The historical record of natural hazards is non-repeatable, but

confidence is conferred by statistical power from a large sample size, and the input dis-

tribution’s resemblance to the one being tested. While it is reasonable to search for a corner

parameter that defines the size distribution of subduction zone earthquakes (i.e., g[ 0) by

examining a large catalog of them as we have done, it is worth noting some pitfalls.

One important pitfall is excessive aggregation of observations, which might apply to

any empirically based forecast. In the present example, the effort to secure a large global

catalog of subduction earthquakes could result in a stacked group of mixed distributions,

each representing independent undersampled processes. Indeed, individual global sub-

duction zone convergence rates, geometries, and geologic settings vary strongly (e.g., Stern

2002). McCaffrey (2008) divided global subduction zones into 32 regions with indepen-

dent mean recurrence times for the largest moment events ranging from 191–1734 years.

Under this concept, it would be very possible that the tested 1982–2004 period would not

have observed sufficient numbers of high-magnitude events to properly characterize a

tapered Pareto distribution. In other words, the apparently robust 3,586 event catalog is

really an aggregate of * 32 independent catalogs consisting of * 100 events each.

We model this effect using a simple earthquake simulator that was tested for the Nankai

subduction zone in Japan, the San Andreas fault in California, and the Wasatch fault in

Utah (Parsons and Geist 2009a; Parsons et al. 2012). We must use synthetic catalogs for

this test because that is the only way to assess the completeness of high-magnitude events,

because the parent magnitude frequency distributions are known and pre-defined. The

method assigns earthquakes of initial magnitude randomly sampled from a Gutenberg–

Richter relation (pure Pareto distribution), but modifies them according to slip rate, fault

geometry, and strain budget based on prior events. Systems are thus allowed to develop

characteristic magnitudes if needed to fit observations. We use this technique to develop

individual synthetic earthquake catalogs for 32 subduction zones as defined by McCaffrey

(2008) scaled for the 1982–2004 time interval and then perform the same MLE analysis as

was done for the real catalog in Fig. 16a.
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The results of our modeling exercise are quite similar to the real catalog, with a modeled

corner magnitude of mc = 8.3 as compared with mc = 8.1 from the real catalog. The

individual catalogs each have a maximum reported magnitude that creates an apparent

Pareto taper such that the confidence intervals on the corner moment are overfit to high

confidence (Figs. 17, 18).

The occurrence of several m C 8.6 earthquakes since 2004 is inconsistent with the

1982–2004 corner moment analysis despite its apparent high degree of significance. The

result shown in Fig. 16b suggests that a corner moment greater than equal 1024

(mc C 9.94) or any other arbitrary high value cannot be excluded at the 99 % confidence

level. These results do lend caution to interpreting a likelihood-based upper bound to a

corner size from a catalog depleted in large events. We suggest that increasing sample size

by aggregating multiple undersampled catalogs can produce a distribution that, while fit to

a high degree of confidence, may not adequately represent the full hazard.
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4 Discussion

Throughout this study, we have compared the unbounded pure Pareto distribution to the

tapered Pareto distribution using natural hazards catalog data. Parameter estimation of both

distributions was performed, with the tapered Pareto distribution specified by a corner size

parameter Ac that dictates the location of the exponential taper, in addition to the power-

law scaling exponent b. In most cases, likelihood-based methods can specify b for both

distributions with reasonable accuracy and approximately symmetric upper and lower

bounds. In contrast, estimates of Ac are unstable and the confidence bounds are strongly

asymmetric, with the upper confidence bound typically not determined. (The confidence

bounds are symmetric, rather, in terms of g = 1/Ac). Using likelihood ratios, the pure

Pareto null hypothesis could not be rejected for each natural hazard example examined

except the 1982–2004 sub-catalog of subduction zone earthquakes, though, as discussed

above, the tapered Pareto fit to the subduction catalog is likely a result of mixing multiple

distributions. The occurrence of several m C 8.6 earthquakes since 2004 supports a pure

Pareto model.

Although a pure Pareto distribution is the simplest model supported by a statistical

analysis of the data, this model presents considerable difficulties in hazard assessments that

require specification of a deterministic ‘‘maximum’’ severity or cumulative economic loss,

owing to the fact that such a distribution is scale free. There are certainly physical controls

on natural hazard size. For example, tsunami size is limited by turbulent attenuation from

wave breaking and bottom boundary-layer flow near shore (Lynett et al. 2002; Korycansky

and Lynett 2005); conceptually, earthquake size is limited by the available fault rupture

dimensions and slip (e.g., Wyss 1979). This study demonstrates that while there are

physical mechanisms that limit the size of the natural hazard, in most cases, we cannot

confidently determine the deviation from Pareto of the size distribution tail using historical

data.

Because of the difficulty in estimating a maximum size from historical data, deter-

ministic assessments that estimate the maximum severity of a hazard are prone to sig-

nificant uncertainty that typically is not conveyed in these assessments. However, in many

applications, the hazard can be defined probabilistically. For example, a deterministic

‘‘probable maximum tsunami’’ used to assess the tsunami risk at US nuclear power plants

(Yen 1988; Prasad 2009; IAEA 2011) could be replaced with a design probability speci-

fication for use in a performance-based risk analysis (Porter et al. 2007). Zaliapin et al.

(2005) also develop methods to calculate sums from a pure Pareto in estimating cumulative

economic losses. Marzocchi et al. (2012) review Bayesian methods to apply pre-calculated

and operational hazard probability to better inform evacuation decisions compared to

deterministic tools.

Probabilistic hazard assessments can incorporate limiting conditions on hazard size by

incorporating physical constraints to the size of the hazard source (e.g., moment conser-

vation for earthquakes) and by determining the effects of propagation between source and

site (e.g., seismic attenuation relations for earthquakes and unit hydrographs for floods).

For example, probabilistic tsunami hazard analysis (PTHA) (Geist and Parsons 2006;

Parsons and Geist 2009b) can compute the tsunami size distribution at a site through the

use of numerical propagation and runup models that include the effects of shoaling

amplification, dispersion, refractive focusing, scattering, wave trapping, and wave break-

ing. However, the resulting hazard curve (that includes an estimate of activity rate and an

assumed inter-event time distribution) is critically dependent on the earthquake moment

distribution input to PTHA. For example, if historical earthquakes are used as the basis for
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developing tsunami hazard curves (e.g., Rikitake and Aida 1988; Annaka et al. 2007),

PTHA can underestimate the hazard in a similar manner as for the empirical analysis of the

hazard explained in this paper. Rather, for coastlines along subduction margins, it is likely

that earthquake sizes follow a modified Pareto distribution with a higher corner magnitude

determined from both a moment conservation principal and catalog data (mw [ 9.1) than

indicated solely from regional historical data (Bird and Kagan 2004). Theoretical limits to

source or hazard size themselves may be subject to considerable epistemic uncertainty that

can be incorporated in a logic tree framework (e.g., Field et al. 2009). Finally, empirical

analyses can be combined with computational PTHA to yield a better representation of

uncertainty in tsunami hazard estimation (Parsons and Geist 2009b; Grezio et al. 2010).

5 Conclusions

In examining the effects of undersampling of natural hazards that exhibit power-law

scaling, several key findings have been made as described below:

1. The tails of empirical distributions generated from synthetic catalogs sampled from a

pure Pareto distribution deviate from the parent distribution and take on a trumpet-

shaped envelope (Naylor et al. 2009; Main et al. 2011) with two general effects

(Fig. 2):

a. In some cases, the tail of an empirical distribution is dominated by one-to-several

large events, sometimes interpreted as system-wide, or characteristic events. For

example, a characteristic earthquake fully ruptures a fault segment and a

‘‘characteristic’’ tsunami is the tsunami that is generated from such an event.

However, this is also consistent with artifacts of finite sampling of a Pareto

distribution.

b. In other cases, the tail of an empirical distribution appears depleted relative to a pure

Pareto distribution. This too can be an artifact of finite sampling and the

distribution can change dramatically with the addition of even one large event.

The apparent depleted empirical distribution is more difficult to diagnose than the

apparent characteristic events, in that the former appears as an exponentially

tapered Pareto distribution with a low corner size.

2. Whereas the corner size (Ac) of a given natural hazard can be estimated from many

catalogs, the upper confidence bound cannot be determined, such that the pure Pareto

distribution cannot be rejected from a statistical standpoint.

3. In cases where the measurement threshold for a natural hazard is within several orders

of magnitude of a corner size (if it exists), the estimates of corner size and the power-

law scaling exponent are dependent on one another. Joint, two-parameter estimation

techniques are often required. In addition, traditional profile-based likelihood ratio

tests may not detect cases where two-parameter confidence contours intersect the 1/

Ac = g = 0 axis.

Several natural hazard examples that have previously been inferred to have power-law

scaling were chosen to illustrate various effects of undersampling. Statistical analysis of

data from the Miyako, Japan, tide gauge station that has a long historical catalog of

tsunami events indicates that a Pareto distribution is well fit to the data. Estimates of b are

close to one for this station, which is the limit where the statistical moments of a Pareto

distribution are finite. For a tapered Pareto distribution, estimates of Ac appear to be
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dependent on the estimates of b, indicating that joint two-parameter estimation methods

should be employed for tsunamis. Although the power-law exponent b is little affected by

the addition of a single extreme event (i.e., the 2011 Tohoku-oki tsunami), attempts to fit a

tapered Pareto distribution with a corner parameter Ac are greatly affected by the addition

of the 2011 Tohoku-oki tsunami measurement, indicating that the estimates of Ac are not

stable with time. The upper confidence bound of Ac cannot be determined with or without

the 2011 Tohoku-oki tsunami measurement.

Analysis of the Wenatchee and Arroyo Seco discharge catalogs in the United States

illustrates the effects of climate on flood distributions (Turcotte and Haselton 1996). Partial

duration floods along the Wenatchee River, which is in a maritime climate, closely follows

a pure Pareto distribution with a relatively large value of b ([ 2), such that the statistical

moments are finite even without an exponential taper. In contrast, floods along the Arroyo

Seco River appear to be best fit by a tapered Pareto distribution with a low value of b
(B 1), though strictly speaking, the pure Pareto distribution cannot be ruled out with

confidence. Like the tsunami example, estimates of b and Ac are jointly dependent.

For earthquakes, in contrast, the many orders of magnitude between the measurement

threshold and largest events suggest that the estimates of b and Ac are approximately

independent. Estimates for b are very well constrained by the catalog compared to other

natural hazards. The MLE of b is less than one, indicating that the statistical moments of

the pure Pareto distribution are infinite and suggesting that some taper must be physically

required (Kagan 1999; Pisarenko and Sornette 2003). If one examines a sub-catalog of

subduction zone earthquakes from 1982–2004, it appears that an upper bound for Ac can be

confidently established, and that the pure Pareto null hypothesis can be rejected. However,

that period of time is deficient in m C 8.6 earthquakes. In contrast, if one examines the full

catalog that includes recent large-magnitude earthquakes, the confidence contours reach

the g = 0 axis (null hypothesis cannot be rejected). Like the tsunami example, this

indicates that the estimates of Ac are unstable with time.

The result Ac could be ‘‘determined’’ at high confidence with the 1982–2004 subduction

zone earthquake catalog, whereas Ac is undefined for the 1982–2008 period illustrates a

pitfall in hazard data selection. Aggregation of multiple catalogs increases the sample size,

which conveys a sense of statistical power. However, stacking of independent and likely

undersampled data sources is shown to produce an artificial Pareto taper that underesti-

mates the true Ac value. This pitfall may apply to other natural hazards as well.

While it is reasonable to assume that the size of a natural hazard is physically limited or

bounded, the available data often shed little light on the upper confidence bound for the

corner size parameter for the hazard. Probabilistic hazard assessment methods can help

determine limits on natural hazard size for a specified design probability, but these

methods are dependent on information related to the size distribution of input parameters.

Thus, the undersampling problem remains. Given that typically much more data would be

need to be added to a catalog to determine confidence bounds on the corner size

parameter, additional research in estimating the physical, theoretical limit of natural

hazard size is the most likely way to address the problem of undersampling Pareto-

distributed hazards.
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